Testing limits to adaptation along altitudinal gradients in rainforest Drosophila.
نویسندگان
چکیده
Given that evolution can generate rapid and dramatic shifts in the ecological tolerance of a species, what prevents populations adapting to expand into new habitat at the edge of their distributions? Recent population genetic models have focused on the relative costs and benefits of migration between populations. On the one hand, migration may limit adaptive divergence by preventing local populations from matching their local selective optima. On the other hand, migration may also contribute to the genetic variance necessary to allow populations to track these changing optima. Empirical evidence for these contrasting effects of gene flow in natural situations are lacking, largely because it remains difficult to acquire. Here, we develop a way to explore theoretical models by estimating genetic divergence in traits that confer stress resistance along similar ecological gradients in rainforest Drosophila. This approach allows testing for the coupling of clinal divergence with local density, and the effects of genetic variance and the rate of change of the optimum on the response to selection. In support of a swamping effect of migration on phenotypic divergence, our data show no evidence for a cline in stress-related traits where the altitudinal gradient is steep, but significant clinal divergence where it is shallow. However, where clinal divergence is detected, sites showing trait means closer to the presumed local optimum have more genetic variation than sites with trait means distant from their local optimum. This pattern suggests that gene flow also aids a sustained response to selection.
منابع مشابه
Testing for local adaptation and evolutionary potential along altitudinal gradients in rainforest Drosophila: beyond laboratory estimates.
Predicting how species will respond to the rapid climatic changes predicted this century is an urgent task. Species distribution models (SDMs) use the current relationship between environmental variation and species' abundances to predict the effect of future environmental change on their distributions. However, two common assumptions of SDMs are likely to be violated in many cases: (i) that th...
متن کاملAltitudinal Genetic Variations Among the Fagus orientalis Lipsky Populations in Iran
Nuclear simple sequence repeats (nSSRs), together with 16 different enzyme loci, were used to analyzegenetic diversity and differentiation among beech (Fagus orientalis Lipsky) populations along two altitudinalgradients in Hyrcanian forests of Iran. Both enzymes and nSSR analyses revealed a high level ofgenetic diversity in natural populations of F. orientalis. The genetic div...
متن کاملPost-Glacial Spatial Dynamics in a Rainforest Biodiversity Hot Spot
Here we investigate the interaction between ecology and climate concerning the distribution of rainforest species differentially distributed along altitudinal gradients of eastern Australia. The potential distributions of the two species closely associated with different rainforest types were modelled to infer the potential contribution of post-glacial warming on spatial distribution and altitu...
متن کاملSeedling establishment of Asteraceae forbs along altitudinal gradients: a comparison of transplant experiments in the native and introduced ranges
Aim Since ecological and evolutionary context changes when a plant species is introduced to a new area, it can be assumed that responses of alien plants to changing conditions along environmental gradients differ from those in their native range. Even if seed availability is not limited, the distribution of alien plants along such a gradient might still be restricted by their ability to germina...
متن کاملGradients of precipitation and ant abundance may contribute to the altitudinal range limit of subsocial spiders: insights from a transplant experiment.
Species range boundaries often form along environmental gradients that dictate the success of the phenotypes present in each habitat. Sociality may allow colonization of environments where related species with a solitary lifestyle cannot persist. Social spiders in the genus Anelosimus appear restricted to low- and mid-elevation moist environments in the tropics, while subsocial spiders, common ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Proceedings. Biological sciences
دوره 276 1661 شماره
صفحات -
تاریخ انتشار 2009